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Statistical fibre failure and single crack 
behaviour in uniaxially reinforced ceramic 
composites 
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A lower bound to the work of pull-out is estimated for a ceramic composite under uniaxial 
loading assuming that matrix crumbling does not occur. Fibre failure is assumed to be gov- 
erned by Weibull distribution. In order to compute a lower bound to the energy dissipation it 
is assumed that the failure occurs by a single matrix crack. The fibre/matrix interface is 
assumed to be constrained by friction only. The work of pull-out estimated from the present 
model is compared to the energy dissipation before fibre failure which was computed by 
Aveston, Cooper and Kelly (ACK) in 1971. Comparisons are made with the surface energy of 
monolithic materials. 

1. Introduction 
Perhaps the most important characteristic of practical 
engineering materials is their ability to deform and 
dissipate energy under severe operating conditions. 
Ceramic composites which are intended for high- 
temperature structural applications arc made of brittle 
fibre and matrix material combinations which con- 
sume very little energy when failed individually. The 
composites of these brittle materials must be designed 
such that the fibres and the matrix phases fail at 
different locations and at different times with respect 
to each other, thus allowing relative sl!ding to occur at 
the fibre matrix interface. One method of controlling 
the failure mode of the composite [1, 2] is to introduce 
chopped or regularly spaced predamaged fibres into 
the composite and thus control the fibre pull-out 
length. 

For a composite which is unidirectionally rein- 
forced with continuous long fibres, frictional energy 
dissipation occurs before as well as after fibre failure. 
Frictional energy dissipation before fibre failure 
accompanies matrix cracking and is due to elastic 
stress relaxation. The magnitude of this dissipation is 
of the order of the surface energy, as will be shown 
later. Considerably more energy is consumed after 
fibre failure due to the fact that the fibres slide over 
long distances inside the matrix. However, because of 
the large displacements involved this mode of energy 
dissipation may not always be useful. 

The situation can be described by the sketch given 
in Fig. 1. A tensile specimen is loaded in the fibre 
direction as shown in Fig. la and the apparent stress 
is plotted against cross-head displacement in Fig. lb. 
Apparent stress is defined as the external load divided 
by the original composite cross-sectional area. In the 
initial linear elastic region the fibres and the matrix are 
strained together. Frictional dissipation is absent 
because there is no relative sliding in this region. 
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At a certain stress, 0-cr , the matrix is multiply 
cracked at constant stress and an amount of energy, 
Wd, is dissipated due to the relative sliding at the 
fibre/matrix interface. It will be shown later that the 
strain range of this region is comparable to the elastic 
strain range. Multiple cracking occurs throughout the 
volume of the body. Therefore, Wa is a volume 
quantity, rather than surface. 

It can be shown that the stress distribution in the 
matrix does not change after full multiple cracking 
with additional increase in the external load. The 
fibres carry all of the additional external load and start 
failing in a random fashion throughout the volume of 
the specimen. Eventually, one crack becomes domi- 
nant and final separation occurs along this cradk. The 
energy dissipation which occurs after fibre failure is 
denoted by Wp and is proportional to cross-sectional 
area. Hence, it may be considered to be a surface 
quantity. 

In this paper a lower bound to Wp is given by 
assuming that the pull-out process occurs due to one 
matrix crack only. The case of multiple cracks is 
treated by Sutcu [3]. The lower bound which is given 
in this paper is a good measure of toughness for 
material design purposes. 

2. Energy dissipation before fibre 
failure, W d 

Energy dissipation before fibre failure has been com- 
puted by Aveston et al. [4] (ACK) assuming that the 
composite has a pre-existing large crack in the matrix 
phase and that steady state matrix crack extension 
takes place whenever the external work done by the 
surface tractions is equal to the summation of the 
following three energy terms: 

1. surface energy of the matrix; 
2. frictional dissipation along the fibre matrix inter- 

face on both sides of the crack surface; 
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Figure 1 (a) Uniaxial specimen. (b) Typical stress-strain curve. 

3. the increase in the elastic energy stored in the 
crack region. Note that the elastic energy of the matrix 
is reduced, but the increase in the fibre elastic energy 
is more than enough to offset this reduction. 

These energy terms are evaluated by ACK and it 
can be shown that they are related to each other in a 
remarkably simple way 

])gf = A U  = Vm~ m ( l )  

where Wr is the frictional energy dissipation per unit 
area of the composite, and AU and rm]J m a re  the 
change in the local elastic energy and the critical 
matrix crack extension energy release rate per unit 
area of the composite, respectively, in which Vm and ~m 
denote matrix volume fraction and matrix crack 
extension energy, respectively. 

The result given by Equation 1 for a single matrix 
crack with bridging fibres can be considered as an 
ideal case of crack deflection due to high-modulus 
brittle inclusions in a brittle matrix. This result clearly 
indicates that it is impossible to obtain significant 
toughening by crack deflection only. The question, 
now, becomes how much energy can be dissipated by 
multiple cracking. A reasonable estimate can be given 
by assuming that the matrix crack spacing is twice the 
value of the slip length (ACK) which is denoted by w 
and given by 

_(a 2 V~v,. EmEfE ~ /37m~'''3 (2) W 

where a is the fibre radius, E,,, Er, E are Young's 
moduli of the matrix, fibre and composite, respectively, 
r~ is the frictional interface stress, and Vf is the fibre 
volume fraction. 

The energy dissipation before fibre failure per unit 
volume of the composite, Wa, can be obtained by 
multiplying the number of cracks, 1/2w, per unit 
length with the energy dissipation per unit area of a 
single crack, to yield 

3EmEfj (3) 

Thus, Wd is relatively strongly dependent on the 
product  of the matrix surface energy, 7m, interface 
frictional stress, z,, and fibre radius, a. Dependence on 
volume fractions is weaker. However, when V r = 
Vm = 0.5 the value of Wa is maximized. 

The energy dissipation, Wd, which is predicted from 

Equation 3 is very small compared to the plastic 
deformation of metals. It can be shown that the strain 
range of full multiple cracking is at most of the order 
of the elastic strain range of the composite. Skipping 
the details, the ratio of the former to the latter is 

1 [/mE m (4) 
2 V~E~ 

3. Energy dissipation after fibre failure, 
Wp 

Section 2 was concerned with matrix failure during 
which the fibres remain intact. We now consider the 
effect of fibre failure on the work of fracture for a 
single crack. For a typical ceramic composite the fibre 
failure can be described by statistical failure theories 
of brittle solids. A preliminary discussion of these 
theories is given followed by an analysis of fibre 
failure. 

The energy dissipation due to fibre pull-out is a 
function of the length over which the fibres fail within 
the matrix. This length increases as the applied load is 
increased. For single crack behaviour the fibre stress 
in the vicinity of the crack is considerably higher than 
the rest of the body. Thus, we may neglect the effect of 
the background stress and assume a triangular axial 
stress profile with the slope determined by 2r~/a. The 
peak fibre stress increases from zero to infinity at 
constant slope. The fibre failure probability and the 
average incremental pull-out length are determined 
from the Weibull analysis. The total work of pull-out 
is obtained by integrating frictional work per fibre 
over the whole range of probable lengths as a function 
of the peak stress. 

3.1. Statistical considerations of brittle failure 
The tensile strength of a brittle material under uni- 
form loading is governed by the Weibull distribution 
(see, for example Trustrum and Jayatilaka [5]), with 
the probability of failure at stress, o-, given by 

Pf  = 1 - e x p [ - V (  a - O'nf~'~ (5) 
\ or0 / A 

where m is a parameter known as the Weibull modulus 
that characterizes the flaw distribution, V is the total 
volume of the material, a0 is a normalizing factor and 
O-nr is the stress below which there is zero probability 
of failure. 

The above expression assumes that there is a single 
set of volume flaws in the material [6]. If failure occurs 
due to surface flaws rather than volume flaws, then the 
total volume, V, in Equation 5 must be replaced by the 
total surface, S. 

The Weibull distribution 
obtained from the following, 

Pf = 1 -  e x p [ -  f f f v  

given by Equation 5 is 
more general, expression 

(or ~ an(~" dx dy dz] 
a0 / 

(6) 

which provides for the case where the stress distribu- 
tion in the test specimen is non-uniform. 

The Weibull distribution predicts the failure prob- 
ability of one specimen, but does not indicate where 
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failure occurs within the body. Johnson and Tucker [7] 
evaluated the volume integral of Equation 6 over a 
subdomain of a bend specimen to determine the fail- 
ure probability of  the subdomain, provided that the 
failure probability of the whole body and the stress 
distribution is known. They show that the probability 
of failure initiating over a subdomain of the body is 
proportional to the "effective volume" of the sub- 
volume. Using the same idea, the local probability of 
failure is governed by 

[(~ - ~ n f ) ! ~ 0 ]  m 
Rf(x, z) (7) Y, f f fg [(0" - -  O'nr)/O'0] m dV 

where Rr denotes the fraction of failed specimens (per 
unit volume) with origins in the infinitesimal volume, 
d V. The fraction of the failed specimens with origins 
in a finite subdomain, V~, b, can be obtained by simply 
i n t e g r a t i n g  Rf over the subvolume. The denominator 
of Equation 7 is unaffected because it does not depend 
on (x, y, z). Thus, 

IIjGb [(at- rrnr)/ao]'~'dxdydz 
( 8 )  

i f  fv [(0 - Gr)/o0] ~ dx' dy' dz' 

where F~ b denotes the fraction of the failed specimens 
with origins in V~b. For a single flaw population the 
normalization stress, o0, is a constant. Therefore, it 
cancels out in Equations 7 and 8. 

The volume integrations in Equations 6 to 8 should 
be carried out only in the regions where the local 
stress, or, exceeds the no-failure stress, O-nr , i.e. cr > O-nf. 

As a final note, it should be mentioned that the local 
stress, ~r, in the exponent in Equation 5 would corre- 
spond to the maximum tensile principal stress com- 
ponent in the case of multi-axial loading. It is possible 
to use other brittle failure criteria as an exponent, such 
as the maximum principal value of the strain tensor, 
or the dilatational strain energy, etc. In all these 
cases the constants in Equation 5 must be adjusted 
appropriately. 

3.2. Simple model for fibre failure inside the 
matrix and pull-out length 

The fibres inside the composite will generally tend to 
fail from surface flaws rather than volume flaws. This 
is due to the fact that the interface shear stresses 
enhance the axial stress near the fibre skin and reduce 
it at the centre [8]. Thus, it may be more proper to use 

Fibres 

Figure 2 Assumed stress distribution for the bridging fibres and the 
pull-out length. 

a failure analysis based on surface flaws rather than 
volume flaws. This can easily be accomplished by 
replacing total volume, V, in the Weibull distribution 
(Equation 5) with total surface, S. 

The model is shown in Fig. 2. The main matrix 
crack along which final separation will occur is 
bridged by fibres which are infinitely long on both 
sides. The axial stress in the fibre is maximum at the 
crack surface and drops linearly on both sides, due to 
the assumption of constant interface shear, r~, 

a(z) = 2r--2 (L - z) (9) 
a 

where o(z) is the mean axial stress in the fibre as a 
function of the distance, z, from the crack surface, and 
L is a sampling length along the fibre which is a 
function of the applied external load. Symmetry 
allows us to consider the upper half only in Fig. 2. The 
background fibre stress, a(L), at z = L is assumed to 
be zero. As the external load is increased the slope of 
the fibre stress profile remains constant, but the 
distance L increases in Fig. 2. 

In the Appendix, a separate analysis is given where 
a uniform axial stress is assumed along the length of 
the fibres. 

The fibres may or may not fail under the stress 
distribution given by Equation 9. The fraction, Pf, of 
the fibres which have failed is given by the Weibull 
distribution 

Pf = 1 -  expE--2nafLL(~o;dzl (10) 

where the sampled fibre surface area is (2 haL) on 
either side of the crack surface. The no-failure stress, 
onr, is assumed to be zero. 

The probability of fibre failure (Equation 10) can be 
integrated by using Equation 9, 

P c = l - e x p  [ m+l\cr~J2z~ (a2"c~n)(~L_)m+l] 
(11) 

The unit of cr 0 is nominally (stress x lengthR/m). This 
awkward unit can be avoided by introducing another 
constant into the Weibull formula (Equation 10) 
which has unit magnitude and dimensions of area. 
However, this consideration is not important to the 
present discussion. 

For a given fibre with one flaw population, o0 is a 
material constant. When such a fibre is tested under 
uniform tension, the strength data will depend on the 
length and radius of the test specimen. Thus, 

2 ~ a  
c~ = Her} ~ (12) 

ln2 

where af is the stress which is required to fracture 50% 
of  the fibres with some standard length, H, and radius, 
a, under uniform tension. 

The failure probability given by Equation 11 deter- 
mines the fraction, Pr, of  the fibres which fail prior to 
the present fibre stress. Under the present stress distri- 
bution, an additional fraction, dPr, fails. Let us deter- 
mine the average distance from the crack surface at 

930 



which these ;additional fibres fail. The pointwise 
probability of failure is given by Equation 7, which 
becomes 

Rr(z) - ~ 1 - (13) 

in the region where z < L. The average failure dis- 
tance, Lp, see Fig. 2, is therefore, 

Lp = f: zRf dz (14) 

which, using Equation 13 becomes 

L 
Lp - (15) 

m + 2 

For large values of the Weibull constant, m, the pull- 
out length Lp, approaches zero. This is expected 
because a material with large m fails in a deterministic 
manner at a specific stress level• Thus, the failure 
occurs at the crack surface where the axial stress is 
maximum and no pull-out is obtained. 

The case where there is a minimum stress, tinf, below 
which fibre failure does not occur can be treated by 
simply replacing af with ar - Gf and L with L - Lnr, 
where L~r is given by 

L~r = aa'c (16) 
2"c~ 

3.3. Energy d iss ipat ion,  Wp 
Energy dissipation per fibre due to pull-out can be 
obtained by integrating the force due to the frictional 
wall stress, ~s, over the slipping distance, Lp. The 
frictional dissipation is governed by 

mfibre = jO p 2~zaz'z~ dz' 

= rcar~L~ (17) 

for a fibre which fails at  Lp. The average dissipation 
per fibre is obtained by integrating Equation 17 over 
all pull-out lengths, L v, as a function of failure prob- 
ability, Pr- The total dissipation per unit area of com- 
posite, % ,  is determined by multiplying the average 
dissipation per fibre with the number of fibres per unit 
area Vf/Ora 2) 

Vf'cs fl  L2p dPr (18) G -  S 

The integration in Equation 18 is carried out by using 
Equations II and 15 to give 

flVf a (m 3)/(m+l)a2m/(m+]) 
% - 4 r~m 1)/(m+l) (19) 

where the dimensionless factor,/3, is a function of the 
Weibull constant, m, only 

F[(m + 3)/(m + 1)] 
fl(m) = (m + 2) 2 [2~r/(m + 1)12/(re+t) (20a) 

The gamma function, F, is tabulated in handbooks. 
The values of/3(m) are plotted in Fig. 3. The following 
simple formula approximates fl within 4- 5% accuracy 
over the practical range of m values (m > 2). 

1 . 1 ( m -  1) 
/3(m) - m(m + 2) 2 (20b) 

For large values of m,/3(m) and, as a consequence, Wp 
approach zero. 

Let us define an RMS mean length (Lp)  over which 
the fibres pull out of the matrix, through 

( L p )  2 = fO L2p d P  r (21) 

This integral has already been evaluated in Equation 
18 to determine % .  Thus, (Lp)  can be determined 
from Equations 18 and 19 as 

fill2 (ffo~m/(m+') 
(Lp)  -- 2 a(m-1)/(m+l} (22) 

\ r s /  

Alternatively, an arithmetic mean measure can be 
used and is given by 

(Lp) = f~ Lp dPr (23) 

The result is 4% lower than the RMS values obtained 
from Equation 21 for m = 3. For large values of m 
the difference is very small. 

As fibre strength is usually given in terms of 
an average tensile stress, the pull-out work in 
Equation 19 will be re-written in terms of the stress, at, 
which is required to fracture 50% of the fibre speci- 
mens of some standard length, H, in uniaxial tension. 
By using Equation 12, 

fi vr(  a ~ Cm ')~'+" 2rm(m + [) or ' (9.065H) 2/'l''+ I) 

(24) 

This expression can be related to the critical matrix 
cracking stress, tier, which is given by Budiansky et al. 
[8]. Eliminating (rs/a) from Equation 24. 

W r/3m-3//tm+b _- -fi- a~ m/Ira+l) (9.065H) 2,'(m+b 
- p - c r  4 

X V r 1 67mVr2ErE2]('~-l)'l''+j)~ j 

( 2 5 )  

If the right-hand side of Equation 25 is fixed by speci- 
fying all the material constants, then % and ticr can be 
varied by changing the interface shear rs. For  typical 
values of the Weibull constant m, (m = ~ 5) the 
relationship is governed by 

const. 
G ~ 2 (26) 

O'er 

which shows the inverse interdependence of these 
quantities. 

3.3. 1. Numer ica l  example  
As an example the glass-ceramic/Nicalon composite, 
which is examined by Budiansky et al. will be exam- 
ined. In addition to the material data given by these 
authors we have the following fibre strength proper- 
ties which are representative of Nicalon (SIC) fibres 

H = 0.05m 

ar = 1500 _ 300MPa, 

m = 5. 

(27) 
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These data correspond to the case where samples with 
5 cm length are tested in uniaxial tension and 50% fail 
at a stress ar = 1500 MPa. 

Using Equation 27 in Equation 19 or 24, the work 
of pull-out, Wp, for this glass-ceramic/Nicalon com- 
posite is 

Wp -- 0 .085MPam 

--- 85kJm 2 (28) 

which is 1940 x matrix surface energy, 7m, for LAS- 
glass. The calculated average pull-out length, ( L p )  

from Equation 22 is 

(Lp) = 0.8ram (29) 

which is ~ 100 x fibre radius on either side of the 
matrix crack. 

4. Discussion and conclusions 
The work of pull-out, Wp, in Equation 19 or 24, which 
is determined analytically, is a measure of the com- 
posite toughness under uniaxial loading. The actual 
failure mechanism may or may not be due to a 
single matrix crack. When failure occurs by activating 
multiple matrix cracks the triangular stress profile will 
underestimate the average pull-out length and thus 
underestimate the ~vork of pull-out. In order to predict 
the work of pull-out, Wp, for multiple cracking, the 
triangular stress profile must be replaced by a nearly 
periodic stress profile with peaks at the matrix cracks. 
A first-order approximation would be to replace the 
nearly periodic stress profile with a constant uniform 
stress as is done in the Appendix. 

From a composite material design point of view, 
both triangular and constant stress profiles show 
that the work of pull-out depends on the composite 
material parameters basically in a manner as prescribed 
by the work of Cooper [1] and Kelly [2] on determinis- 
tic aligned discontinuous fibre composites. However, 
the dependence on the Weibull parameter, m, is dif- 
ferent, compare Figs 3 and 4. For a single crack, the 
fibre strength data should show large scatter with low 
values o f  m and for multiple cracking the reverse is 
true in order to maximize the work of pull-out, Wp. 

The work of pull-out, Wp, which is given by 
Equation 19 or 24 is much higher than the surface 
energy of the monolithic ceramics as shown by the 
numerical example. This quantity is considerably 
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Figure 3 The coefficient fl in ~ as a function of  the Weibull con- 
stant, m (triangular stress profile). 
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enhanced with strong fibres with high values of ~r 0. In 
addition to the fibre strength, the work of pull-out, 
Wp, also depends on the interface shear, L, fibre 
radius, a, and the fibre volume fraction, Vf, as can be 
seen from Equations 19 or 24. These expressions indi- 
cate that ~ is nearly proportional to (alva). In other 
words, for pull-out purposes it is better to have large 
diameter fibres which are loosely constrained by the 
matrix. In this sense, Wp is inversely related to the 
matrix cracking stress o-or and to the energy dissi- 
pation, Wd, before fibre failure, see Equations 3 and 
19. However, it is possible to increase crcr without 
changing Wp by lowering the matrix Young's modulus, 
Era, and raising the critical matrix crack extension 
energy, ])m" 

With either the constant or the triangular stress 
profile, large relative displacements must occur for 
energy dissipation, see Equations 22 and A5. In 
general, matrix crumbling occurs which reduces Wp, 
see the picture of the tensile test specimen after load- 
ing which is given by Marshall and Evans [10]. An 
estimate of the pull-out length which causes matrix 
crumbling, together with the ultimate tensile strength 
of the composite are given by Sutcu [3], assuming 
multiple matrix cracking. 

Finally, the energy dissipation Wo before fibre fail- 
ure which is given by Equation 3 is not a significant 
quantity. The consequences of this simple result 
extends beyond the uniaxially reinforced ceramic 
composites. The result given by Equation 1 implies 
that the particulate inclusions and crack deflection are 
not effective toughening mechanisms although they 
may enhance the modulus and load-bearing capability 
of the unreinforced matrix. The failure will still be 
catastrophic. 
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Appendix. The work  of pull-out for 
constant axial f ibre stress 

Let us assume that the axial fibre stress, a, is constant 
along the length of the fibre as opposed to the trian- 
gular variation which is sketched in Fig. 2. As the 
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Figure 4 The coefficient fl' in W o for constant  stress profile. 
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external load is increased, the fibre stress increases 
while maintaining a constant profile. At any given 
value of o, it is equally probable to fracture the fibres 
anywhere along the entire length of the fibre. How- 
ever, there is a minimum distance, L, from the matrix 
crack, beyond which the broken fibre ends cannot be 
pulled out unless o is increased further. The relation- 
ship between L and ~r is governed by 

2z~ 
a = - -  L. (A1) 

a 

The length, L, effectively defines a sampling length 
along the fibre, which varies as a function of the 
applied load. The probability of failure, Pr, occurring 
over the length, L, is governed by the Weibull distri- 
bution (Equation 10) which becomes 

Pf 1 exp[--27~a2(Ts~m(2~Za)m+l 1 = - (A2) 
k a0/  

using Equation A1. The fraction of the fibres which 
fail over the length L have an average failure distance 
o f  Lp 

Lp = L/2 (A3) 

The work of pull-out, Wp, is given by Equation 18 
with Lp and Pr defined by Equation A3 and A2, respec- 
tively. Performing the integration the work of pull- 
out, W~, for constant stress profile is again governed 
by Equation 19 with fi replaced by fl', which is given 
by 

if(m) F[(m ÷ 3)/(m + 1)] (A4) 
= 4(2rc)2/(m+1) 

The values of  fl' are plotted in Fig. 4. Comparison 
with Fig. 3 indicates that the uniform axial stress case 
predicts a larger work of pull-out, Wp, compared to 
the triangular case. The pull-out work, Wp, in this case 

increases with m, as opposed to the previous case, up 
to an asymptotic value of 1/4. 

The average pull-out length for constant stress 
profile can be obtained from Equation 22 by simply 
replacing /~' with /L If, instead of the RMS mean 
(Equation 21), the arithmetic mean (Equation 23) is 
used, then the coefficient if/2 in Equation 22 must be 
replaced by 

F[(m + 2)/(m + 1)] (A5) 
2(2rt)l/(m+') 
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